Формула разброса

Благодаря формуле разброса, зная сумму действующих токов, мы можем определить действующие токи в параллельных ветвях.

Формула разброса —  действующий ток в параллельной ветви равен произведению сумме токов (I) в параллельных ветвях и отношению сумме Читать далее Формула разброса

Расчёт электрической цепи постоянного тока методом наложения (суперпозиции токов)

Этот метод заключается в том, что воздействие нескольких источников на какой либо элемент цепи можно рассматривать как результат воздействия на элемент каждой ЭДС по отдельности независимо от других источников.

Если  в рассчитываемой цепи присутствует несколько источников ЭДС, то расчет электрической цепи сводится к расчету нескольких цепей с одним источником. Ток в любой ветви рассматривается как алгебраическая сумма частных токов созданных каждой ЭДС по отдельности. Читать далее Расчёт электрической цепи постоянного тока методом наложения (суперпозиции токов)

Преобразование треугольника сопротивлений в эквивалентную звезду и обратно

Преобразование треугольника сопротивлений  в эквивалентную  звезду

Иногда для облегчения расчетов применяют преобразование треугольника сопротивлений  в эквивалентную  звезду. 

Треугольник сопротивлений представляет собой треугольник сторонами которого является сопротивления (рис. 1). Читать далее Преобразование треугольника сопротивлений в эквивалентную звезду и обратно

Коэффициент мощности, что это такое?

Коэффициент мощности (cos φ — косинус фи) — это отношение активной мощности к полной. Чем ближе это значение к единицы, тем лучше, так как при значении cos φ = 1 — реактивная мощность равна нулю следовательно меньшая потребляемая мощность в целом. Читать далее Коэффициент мощности, что это такое?

Баланс мощностей в цепи постоянного тока

Баланс мощностей является следствием закона сохранения энергии — суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.

Баланс мощностей используют для проверки правильности расчета электрических цепей. 

Расчёт электрической цепи постоянного тока методом контурных токов.

Метод основан на использовании только второго закона Кирхгофа.
Схема делится на ячейки (независимые контуры). Для каждого контура вводится свой ток Ik, который является расчётной величиной.
Снимок2

Итак, в заданной цепи (рис. 1.38) можно рассмотреть три контура-ячейки (АДСВА, ABA’А, А’СВА’) и ввести для них контурные токи Iк1 Iк2, Iк3.
Если в контуре ячейки имеется ветвь не входящая в другие контуры то она называется внешней. В таких ветвях контурные токи Ik являются действительными токами в внешних ветвях Ikn = In.

Что такое электрическая схема, ветвь, узел, контур.

Электрическая схема представляет собой графическое изображение электрической цепи. Она показывает, как осуществляется соединение элементов в рассматриваемой электрической цепи.

Простым языком электрическая схема это упрощенное изображение электрической цепи. Читать далее Что такое электрическая схема, ветвь, узел, контур.

Конденсаторы постоянной ёмкости

Это вторая часть статьи конденсаторы настоятельно рекомендую ознакомится с первой частью.

Конденсаторы постоянной ёмкостиКонденсаторы1

Конструкция, параметры и назначение конденсаторов зависит от рабочего диапазон частот.

Низкочастотные конденсаторы постоянной ёмкости используют в цепях постоянного, переменного и пульсирующего токов низкой частоты Читать далее Конденсаторы постоянной ёмкости

Расчёт электрической цепи постоянного тока методом узловых и контурных уравнений.

Этот принцип основан на первом и втором законе Кирхгофа. Он не требует преобразования схемы.

Порядок расчёта:

  1. Произвольно задаёмся направлением токов в ветвях. (Токи в ветвях надо направлять так, что бы хотя бы один ток выходил из узла и один входил в узел)

    Читать далее Расчёт электрической цепи постоянного тока методом узловых и контурных уравнений.

Конденсатор

Конденсаторы — это радиодетали способные накапливать электрические заряды и состоящие из двух или более токопроводящих обкладок, разделенных диэлектрикомКонденсаторы1.

Классификация конденсаторов

Основные характеристики конденсаторов Читать далее Конденсатор