Символический (комплексный) метод расчета цепей переменного тока

Одним из способов расчета цепей переменного тока является комплексный, или еще как говорят, символический метод расчета. Этот метод применяется при анализе схем с гармоническими ЭДС, напряжениями и токами. В результате решения получают комплексное значение токов и напряжений, используя для решения любые методы (эквивалентных преобразований, контурных токов, узловых потенциалов и т.п.). Но для начала необходимо иметь понятие, в каких именно формах может представляться синусоидальная величина. 1. Одна из форм представления – это вращающийся вектор (см. рис.1):

Вращающийся вектор

Рис.1. Вращающийся вектор

С помощью рисунка ясно видно, как с течением времени меняется значение синусоидальной величины. В нашем случае – это величина а на графике, которая может быть, например, входным напряжением. Величина имеет некоторое начальное значение при t = 0 при начальной фазе φ

имеет положительное максимальное значение при угле ωt3, когда при времени t3 сумма ωt3φ = 90° и соответственно,

имеет отрицательное максимальное значение при угле ωt7, когда при времени t7 сумма углов ωt7φ = 270° и, соответственно,

и имеет два нулевых значения при ωtn + φ = 0, когда ωtn = —φ (на рис.1 эта область не показана и находится слева от начала координат)

и тогда

и имеет нулевое значение при угле ωt11, когда при времени t11 сумма ωt11φ = 360° и соответственно,

Именно по такому закону и меняется привычное нам переменное напряжение 220 В, изменяясь по синусоидальному закону от  значения  0 В до максимальных 311 В и обратно.

2. Другая форма представления – это комплексное число. Чтобы представить ранее рассмотренную форму представления синусоидальной величины, которая имеет некоторую начальную фазу φ, создают комплексную плоскость в виде графика зависимости двух величин (рис.2)

Комплексное число на комплексной плоскости

Рис.2. Комплексное число на комплексной плоскости

Длина вектора Am на такой комплексной плоскости равна амплитуде (максимальному значению) рассматриваемой величины. С учетом начальной фазы φ такое число записывают как .

На практике при использовании для расчетов символического (комплексного) метода расчета используют для некоторых удобств не амплитудное значение величины, а так называемое действующее значение. Его величина в корень из двух раз меньше амплитудного и обозначается без индекса m, т.е. равна

действующее значение

На рисунке выше этот вектор также показан.
Например, при том же нашем напряжении в сети, максимальное значение синусоидально изменяющегося напряжения равно 311 В, а действующее значение, к значению которого мы привыкли

Действующее значение напряжения

При работе с комплексными числами и расчетов применяют различные формы записи комплексного числа. Например, при сложении комплексных чисел удобнее использовать алгебраическую форму записи таких чисел, а при умножении или делении – показательную форму записи. В некоторых случаях пишут тригонометрическую форму.
Итак, три формы записи комплексного числа:

1) показательная форма в виде

Показательная форма комплексного числа

2) тригонометрическая форма в виде

Тригонометрическая форма комплексного числа

3) алгебраическая форма

Алгебраическая форма комплексного числа

где ReA — это действительная составляющая комплексного числа, ImA — мнимая составляющая.

Например, имеем комплексное число в показательной форме вида

в тригонометрической форме записи это запишется как

при подсчете получим число, плавно переходящее в алгебраическую форму с учетом того, что

В итоге получим

где

При переходе от алгебраической формы к показательной комплексное число вида

переходит к показательному виду  по следующим преобразованиям

а угол

Таким образом, и получим

Перейдем к рассмотрению несложных примеров использования  символического, или по-другому, комплексного метода расчета электрических цепей. Составим небольшой алгоритм комплексного метода:

      • Составить комплексную схему, заменяя мгновенные значения ЭДС, напряжений и токов их комплексным видом
      • В полученной схеме произвольно выбирают направления токов в ветвях и обозначают их на схеме.
      • При необходимости составляют комплексные уравнения по выбранному методу решения.
      • Решают уравнения относительно комплексного значения искомой величины.
      • Если требуется, записывают мгновенные значения найденных комплексных величин.

Пример 1. В схеме рис.3 закон изменения ЭДС e = 141sin*ωt. Сопротивления R1 = 3 Ом, R2 = 2 Ом, L = 38,22 мГн, С = 1061,6 мкФ. Частота f = 50 Гц. Решить символическим методом. Найти ток и напряжения на элементах. Проверить 2-ой закон Кирхгофа для цепи.

Схема с последовательным соединением элементов

Рис.3. Схема с последовательным соединением элементов

Составляем комплексную схему, обозначив комплексные токи и напряжения (рис.4):

Схема с комплексными обозначениями

Рис.4. Схема с комплексными обозначениями

По закону Ома ток в цепи равен

Закон ома в комплексной форме

где U — комплексное входное напряжение, Z — полное сопротивление всей цепи. Комплекс входного напряжения находим как

Пояснение: здесь начальная фаза  φ = 0°, так как  общее выражение для мгновенного значения напряжение вида при  φ = 0° равно

Соответственно, комплекс входного напряжения в показательной форме запишется как

Полное комплексное сопротивление цепи в общем виде

Находим комплексное сопротивление индуктивности

Находим комплексное сопротивление емкости

Соответственно, общее комплексное сопротивление цепи

Ток в цепи

Комплексные напряжения на элементах

Проверяем второй закон Кирхгофа для замкнутого контура, т.е. должно выполняться равенство

Проверяем

С небольшим расхождением из-за округлений промежуточных вычислений всё верно.

Пример 2. В электрической цепи (рис.5) однофазного синусоидального тока, схема и параметры элементов которой заданы для каждого варианта в таблице, определить:
1)  полное сопротивление электрической цепи и его характер;
2)  действующие значения токов в ветвях;
3) показания вольтметра и ваттметра;

    1. Исходные данные: Е = 220 В, f = 50 Гц, L1 = 38,2 мГн, R2 = 6 Ом, С2 = 318 мкФ, L2 = 47,7 мГн, R3 = 10 Ом, С3 = 300 мкФ.

Рис.5.Цепь однофвзного синусоидального тока

Решение:
1.  Находим комплексные сопротивления ветвей и всей цепи:
Учитываем, что

Комплексное сопротивление первой ветви:

Комплексное сопротивление второй ветви:

Комплексное сопротивление третьей ветви:

Общее сопротивление цепи

Откуда

— нагрузка носит активно-индуктивный характер

2. Находим действующие значения токов в ветвях:

 

Рис.6. Схема с обозначенными комплексными токами

Действующие значения, соответственно,

3. Определим показания приборов:
Вольтметр подключен по схеме параллельно источнику питания. Соответственно его показание равно:
U=220 В
Ваттметр включен токовой обмоткой в разрыв третьей ветви, а обмоткой напряжения также к выводам третьей ветви, измеряя, таким образом,  активную мощность третьей ветви. Эта мощность равна мощности на сопротивлении R3. Его показания:

  • Это бомбическая статья, было бы здорово почитать о таком же подходе к активным цепям на полупроводниках

  • Вопрос, во втором расчете верно ли указаны действующие токи? Как я понял, действующие токи это действительная часть комплексного числа, а в выводе указано основание комплексного числа в показательной форме. И банальный алгебраический расчет показывается разбаланс токов. Я голову сломал что не так.
    В первом расчете указанные наблюдения совпадают точно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *